The analysis of large-scale gene expression correlated to the phase changes of the migratory locust.

نویسندگان

  • Le Kang
  • Xiangyong Chen
  • Yan Zhou
  • Bowan Liu
  • Wei Zheng
  • Ruiqiang Li
  • Jun Wang
  • Jun Yu
چکیده

The migratory locust is one of the most notorious agricultural pests that undergo a well known reversible, density-dependent phase transition from the solitary to the gregarious. To demonstrate the underlying molecular mechanisms of the phase change, we generated 76,012 ESTs from the whole body and dissected organs in the two phases. Comparing 12,161 unigene clusters, we identified 532 genes as phase-related (P < 0.01). Comprehensive assessment of the phase-related expression revealed that, whereas most of the genes in various categories from hind legs and the midgut are down-regulated in the gregarious phase, several gene classes in the head are impressively up-regulated, including those with peptidase, receptor, and oxygen-binding activities and those related to development, cell growth, and responses to external stimuli. Among them, a superfamily of proteins, the JHPH super-family, which includes juvenile hormone-binding protein, hexamerins, prophenoloxidase, and hemocyanins, were highly expressed in the heads of the gregarious hoppers and hind legs of the solitary hoppers. Quantitative PCR experiments confirmed in part the EST results. These differentially regulated genes have strong functional implications that numerous molecular activities are involved in phase plasticity. This study provides ample molecular markers and genomic information on hemimetabolous insects and insights into the genetic and molecular mechanisms of phase changes in locusts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid

Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...

متن کامل

Expression and Purification of Recombinant Outer Surface Protein D of Borrelia burgdorferi

To carry out the immunological experiments on the serum of Multiple Sclerosis (MS) patients, based on a correlation between Borrelia burgdorferi infection and contracting MS autoimmune disease the outer surface protein D (OspD) of the bacterium was expressed and purified. A clone containing the OspD gene in pET11a expression vector under the control of T7 promoter was transformed to the bacteri...

متن کامل

Expression of Recombinant Factor IX Using the Transient Gene Expression Technique

Background: Pilot and large-scale production of recombinant proteins requires the presence of stable clones capable of producing large quantities of recombinant proteins. Not only the process of selecting stable clones is time consuming, but also the continuous culturing of clones in large-scale production may cause loss of incoming plasmid and recombinant genes. Thus, considering the advanceme...

متن کامل

Gene expression and activity of phenyl alanine amonialyase and essential oil composition of Ocimum basilicum L. at different growth stages

Phenylalanine amonia-lyase (PAL) is one of the most important enzymes that plays a key role in regulationof phenylpropanoid production in plants. It catalyzes the first step of the phenylpropanoid pathway in whichL-phenylalanine is deaminated to trans-cinnamic acid. This step is significant for metabolic engineering andhyper-expression of the major phenylpropanoid, methyl chav...

متن کامل

CSP and Takeout Genes Modulate the Switch between Attraction and Repulsion during Behavioral Phase Change in the Migratory Locust

Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 51  شماره 

صفحات  -

تاریخ انتشار 2004